Dr Christofer Clemente

Accessibility links

Dr Christofer Clemente


Teaching areas

  • Ecophysiology

Research areas

  • ecophysiology
  • ecomorphology
  • biomechanics
  • evolutionary systems


Dr Clemente is interested in the relationship between form, function and ecology of living and extinct animals. His earliest studies examined the relationship between vision and ecology in spiders. Later, at the University of Western Australia, Dr Clemente switched his focus to the evolution of locomotion. He studied morphology, metabolic rates and biomechanics and compared these to ecological characteristics and locomotory ability in a large group of lizards, the varanids. Dr Clemente similarly studied these traits in other lizard groups, including an extensive project examining the evolution of bipedalism in dragon lizards, showing lizards were essentially popping a wheelie. He later continued his research at the University of Cambridge, focusing on insect adhesion, examining the multitude of solutions insects have developed to overcome the problems of sticking to smooth surfaces. At Harvard University, Dr Clemente examined the vertebrate muscle system, specifically how muscle mechanics integrate with the environment dynamically, during locomotion. His research at the University of Queensland continued my research into lizard locomotion, with a focus on the design of biologically inspired climbing robots. He has combined many aspects of this research into his current role at the University of the Sunshine Coast and is particularly interested in the emerging field of Evolutionary Biomechanics.

Professional memberships

  • Society of Integrative and Comparative Biology (SICB)
  • Society for Experimental Biology (SEB)
  • Royal Society of Western Australia (RSWA)


ARC DECRA fellowship (2012-2015) Design of a biologically inspired running and climbing robotic lizard DE120101503 ($385,000).

UQ New Staff Research Start-Up Fund (2013) Design and construction of a biologically inspired running and climbing robotic lizard ($12,000).

UQ-UWA bilateral scheme (2014) - How do echidnas handle the cold? Development and application of cutting edge technology to determine how echidnas exploit their environment for thermoregulation ($15,678).


Clemente, C.J. and Wilson, R.S. (2015) Speed and maneuverability jointly determine escape success during simulated games of escape behaviour. Behavioural Ecology. In Press.

Wu, N.C. Alton, L.A. Clemente, C.J. Kearney, M.R. and White, C.R. (2015) Morphology and burrowing energetics of semi-fossorial skinks (Liopholis). Journal of Experimental Biology. In Press.

Wynn, M.L. Clemente, C.J. Nasir, A.F.A.A. Wilson, R.S. (2015) Running faster can cause disaster: trade-offs between speed, manoeuvrability and motor control when running around courners in northern quolls (Dasyurus hallucatus). Journal of Experimental Biology. 217: 1-7

Clemente, C.J. (2014) The evolution of bipedal running in lizards suggests a consequential origin may be exploited in later lineages. Evolution. DOI: 10.1111/evo.12447

Clemente, C.J. and Richards, C.T. (2013) Muscle function and hydrodynamics limit power and speed in swimming frogs. Nature Communications. 4: 2737.

Clemente, C.J. Withers, P.C. Thompson, G. (2013) Lizard tricks: Overcoming conflicting requirements of speed vs climbing ability by altering biomechanics of the lizard stride. Journal of Experimental Biology. 216: 3854-3862

Richards, C.T. and Clemente, C.J. (2013) Built for rowing: frog muscle is tuned to limb morphology to power swimming. Journal of the Royal Society Interface. 10(84): 20130236.

Clemente, C.J. Withers, P.C. Thompson, G. (2012) Optimal body size with respect to maximal speed for the yellow-spotted monitor lizard (Varanus panoptes; Varanidae). Physiological and biochemical zoology. 85(3): 265

Clemente, C.J. and Richards, C.T. (2012) Determining the influence of muscle operating length on muscle performance during frog swimming using a bio-robotic model. Bioinspiration & Biomimetics 7(3): 036018.

Clemente, C.J. and Federle, W. (2012) Mechanisms of self-cleaning in fluid-based smooth adhesive pads of insects. Bioinspiration & Biomimetics 7(4): 046001.

Richards, C.T. and Clemente, C.J. (2012) A bio-robotic platform for integrating internal and external mechanics during muscle-powered swimming. Bioinspiration & Biomimetics 7(1): 016010.

Bauer, U. Clemente, C.J. Renner, T. and Federle, W (2012) Form follows function: morphological diversification and alternative trapping strategies in carnivorous Nepenthes pitcher plants. Journal of Evolutionary Biology 25(1): 90-102.

Clemente, C.J. Withers, P.C. Thompson, G.G. and Lloyd, D. (2011) Evolution of limb bone loading and body size in varanid lizards. Journal of Experimental Biology. (214): 3013-3020.

Clemente, C.J. McMaster, K.A. Fox, E. Meldrum, L. Stewart, T. and Main, B.Y (2010) The Visual System of the Australian Wolf Spider Lycosa leuckartii (Araneae,Lycosidae): Visual Acuity and the Functional Role of the Eyes. Journal of Aracnology. 38(3): 398-406.

Clemente, C.J. Bullock, J.M.R Beale, A and Federle, W. (2010) Evidence for self-cleaning in fluid-based smooth and hairy adhesive systems of insects. Journal of Experimental Biology. 213: 635-642.

Dirks, J.H. Clemente, C.J. and Federle, W. (2009) Insect tricks: two-phasic foot pad secretion prevents slipping. Journal of the Royal Society Interface. 7(45): 587-593.

Fry, B.G. Wroe, S. Teeuwisse, W. van Osch, M. Moreno, K. Ingle, J. McHenry, C. Ferrara, T. Clausen, P. Scheib, H. Winter, K.L. Greisman, L. Roelants, K. van der Weerd, L. Clemente, C.J. Giannakis, E. Hodgson, W.C. Luz, S. Martelli, P. Krishnasamy, K. Kochva, E. Kwok, H.F. Scanlon, D. Karas, J. Citron, D.M. Goldstein, E.J.C. Mcnaughtan, J.E. and Norman, J.A. (2009) Central role for venom in predation by the Komodo Dragon and the giant extinct Megalania. PNAS. 106(22): 8969-8974.

Clemente, C.J. Dirks, J. Barbero, D. Steiner, U. and Federle, W. (2009c) Friction ridges in cockroach climbing pads: anisotropy of shear stress measured on transparent, microstructured substrates. Journal of Comparative Physiology A. 195: 805-814.

Clemente, C.J. Thompson, G.G. and Withers, P.C. (2009a) Evolutionary relationships of sprint speed in Australian varanid lizards. Journal of Zoology, (London). 278(4): 270-280. [cover picture]

Clemente, C.J. Withers, P.C. and Thompson, G.G. (2009b) Metabolic rate and endurance capacity in Australian varanid lizards (Squamata; Varanidae; Varanus). Biological Journal of the Linnean Society. 97: 664-676.

Thompson, G.G., Clemente, C.J., Withers P.C., Fry, B.G. and Norman, J.A. (2008) Is body shape of Varanid lizards linked with retreat choice? Australian Journal of Zoology 56: 351-362.

Clemente, C.J. Withers, P.C. and Thompson, G.G. (2008) Higher than predicted endurance for juvenile goannas (Varanidae; Varanus). Proceedings of the Royal Society of Western Australia 91: 265-267.

Clemente, C.J. Withers, P.C. Thompson, G. and Lloyd, D. (2008) Why go bipedal? Locomotion and morphology in Australian agamid lizards. Journal of Experimental Biology 211: 2058. [cover picture]

Clemente, C.J. and Federle, W. (2008) Pushing versus pulling: division of labour between tarsal attachment pads in cockroaches. Proceedings of the Royal Society B: Biological Sciences 275: 1329-1336.

Clemente, C.J. McMaster, K.A. Fox, L. Meldrum, L. Main, B.Y. and Stewart, T. (2005) Visual acuity in the sheet-web building Badumna insignis (Araneae, Desidae). Journal of Arachnology, 33: 726-734.

Clemente, C.J. Thompson, G.G. Withers, P.C. and Lloyd, D. (2004) Kinematics, maximal metabolic rate, sprint and endurance for a slow-moving lizard, the Thorny devil (Moloch horridus). Australian Journal of Zoology, 52:487-503.

Projects for Honour students

Koala biomechanics as a conservation tool

This project would examine the biomechanics of koalas moving on flat or inclined surfaces. The goal would be to produce a kinematic model of koala movement and compare this to similar kinematic models of other animals climbing, including the Northern Quoll. Such a kinematic model would be the first step into characterising movement of koalas with the potential to use these models in diagnosis of disease, and to calibrate biosensors to record and predict animal movement in the wild.

All experiments would be performed on captive Koalas at Australia Zoo, or the Wildlife Hospital. To film Koalas walking in 3D, we would require two cameras to be set up on tripods, at 90 degrees from one another, both facing a particular walkway (such as the horizontal logs on display in the Australia Zoo Hospital). We would then wait for the Koala to cross this space, and collect the film of it walking. From this we will digitize landmarks on the film (such as the ankle or knees) to build a 3D model of it walking.

Our idea would then be to use this model to compare the gait of healthy Koalas with sick or injured Koalas, or those which may have diseases. Further projects may use these models combined with accelerometer backpacks, as we have done with echidnas.

Using the accelerometer backpacks we could reconstruct the movement of Koalas out in their natural environment and begin to understand the effects of Urbanisation, effects of cattle grazing, disease, or the potential for dog attacks, all projects with a strong conservation value.

But first we must understand how Koalas move. This project would be a short Honors project run between April – Nov 2016. It would require a 4th year Ecology student to visit the hospital with the cameras, once a week, for around 2-3 hours to film Koalas, for 4-6 weeks. The student will not need to directly contact the Koalas, nor distress them in anyway, only to film them from a distance. But the student will need to enter the koala enclosure to calibrate the filming space.

This project will require some working knowledge of cameras and video editing software, as well as the willingness to learn and use computer coding software such as Matlab and R. If successful this project would lead onto a longer term project at the PhD level, understanding movement in Australia's most iconic animal.

Claw shape with body size and habitat in insects, spiders, lizards and birds

Climbing up and down trees is an important task for many organisms of all shapes and sizes, in many different environments. Claws are remarkably versatile in that with small modifications they are able to perform a variety of functions, in a variety of habitats.

This project will examine this variation among insects, spiders and lizard, using museum specimens and live caught specimens to understand variation in claw shape with size and habitat.

By understanding how claw shape changes with size and function, we will aid in the design of bioinspired robots and many other bioinspired applications.

This project would require a moderate knowledge of photography. Also the ability and willingness to learn coding in Matlab and R is desirable.

This project would be co-supervised by Dr Christofer Clemente and Dr Joanne Macdonald.

Understanding predator prey relationships using computer games

When running away from a predator is it better to run fast in a straight line, or zig zag at a slower speed? Questions such as this are difficult to answer in natural systems since the variation in animal performance rarely encompasses a broad diversity of performance combinations. However by simulating prey in a computer game, and having people try to catch them, we can start to understand these ideas.

This project will build on previous projects which have looked at the relationship between speed and manoeuvrability. It uses a tablet based program to answer these questions. This project will further develop this tablet based game, producing a Java based app which will be available on the play store. This app will address the relative survival benefits of speed, manoeuvrability and camouflage.

A working knowledge of Java and android app development is desirable, though not essential if candidates are willing to learn these skills. This app will have the potential to contribute to our understanding of evolution, and may be a valuable teaching tool for undergrad students.

This project would be co-supervised by Dr Christofer Clemente, Dr Uwe Terton or Dr Mary Kynn.

For more information check out http://jeb.biologists.org/content/218/23/3715?etoc *

* This is an external website and the University of the Sunshine Coast is not responsible for the content.

Movement of Water dragons in a semi-urban setting

Water dragons are a common resident in many urban parklands and native waterways. But how does the presence of people, and the artificial construction of parks affect movement in these dragons? To answer this question we will attach small accelerometers to lizards, in order to understand the movement of lizards.

Much of this project will involve testing different accelerometers in a semi-natural enclosure, likely in conjunction with a wildlife centre such as Australia Zoo. This will act as a pilot for field trials, and help create a library of signature movement patterns to analyse movement in the field.

This project will require the willingness to handle largish lizards, and the willingness to learn some basic coding techniques in Matlab and R.

This project would be supervised by Dr Christofer Clemente.

Back to top

Searching {{model.SearchType}} for "{{model.Query}}" returned more than {{model.MaxResults}} results.
The top {{model.MaxResults}} of {{model.TotalItems}} are shown below, ordered by relevance ({{model.TotalSeconds}} seconds)

Searching {{model.SearchType}} for "{{model.Query}}" returned {{model.TotalItems}} results, ordered by relevance ({{model.TotalSeconds}} seconds)

Searching {{model.SearchType}} for "{{model.Query}}" returned no results.

No search results found for