Lizard tails could be key to off-road robots - University of the Sunshine Coast, Queensland, Australia

Accessibility links

USC News

Lizard tails could be key to off-road robots

26 Sep 2018

Robots could one day have tails and navigate obstacles, says a researcher from the University of the Sunshine Coast who has been studying the way lizards run in slow-motion.

Senior Lecturer in Animal Ecophysiology Dr Christofer Clemente says his study, published today in Journal of the Royal Society Interface, could change the way robots are designed.

“Lizards have four legs which they use for running, and yet sometimes they rear up onto two legs,” Dr Clemente said.

Dr Clemente monitored eight species of Australian lizards, particularly what they did when they swapped between running on four legs and two.

"We found the tail, among other features, was really important for allowing lizards to transition into the two-legged gait which is believed to help create speed and navigate obstacles,” he said.

“If obstacle negotiation is indeed improved with bipedal running, then we have shown how the tail and body can be moved to enable it to happen sooner and for longer.

“We’re still teasing out why these species have evolved to run like this in the first place, but as we learn more, it’s clear that these lessons from nature may be able to be integrated into robotics.”

“Maybe adding a tail to robots can help them go ‘off-road’ sooner.”

Co-author of the research, Nicholas Wu, from The University of Queensland, said the study’s findings challenged existing mathematical models based on the animals’ movement.

“There was an existing understanding that the backwards shift in these lizards’ centre of mass, combined with quick bursts of acceleration, would mean that they would start running on two legs at a certain point,” he said.

“Think of it like a motorcycle driver doing a ‘wheelie’.

“But we found that some lizards run bipedally sooner than expected, by moving their body back and winging their tail up.

“This means that they could run bipedally for longer, perhaps to overcome obstacles in their path.”

The research is not only looking to the future, but to the past, by helping explain the evolution of bipedalism in dinosaurs and how they transitioned from walking on four legs to two legs.

The research has been published in Journal of the Royal Society Interface (DOI: DOI: 10.1098/rsif.2018.0276).

Related articles

A 23-year-old Red-tailed Tropicbird, believed to the oldest-known breeding individual in the world,  nests on Lady Elliot Island
Oldest Red-tailed Tropicbird found on reef island
5 Aug

USC researchers have found what could be the oldest known breeding individual of one of the world’s most elusive seabirds on Lady Elliot Island, at the southern end of the Great Barrier Reef.

USC research projects attract $2M in ARC funding
30 Jul

Nearly $2 million in Australian Research Council Future Fellowships have been awarded to two researchers from USC.

Cost-benefit analysis needed for ‘greening’ of aged care facilities
14 Jul

A proposal to plant more trees to help Australia’s ageing population cope with a warmer climate will require a comprehensive cost-benefit analysis to get the green light from commercial aged care providers, USC research has found.

Contact the USC media team

Name Position Email Phone
Terry Walsh Manager, Media and Messaging +61 7 5430 1160
Janelle Kirkland Media Relations Coordinator +61 7 5459 4553
Clare McKay Media Relations Officer (Regional) +61 7 5456 5669

Search results for

Recent news