Course Outline

Code: ENS253
Title: An Introduction to Geographic Information Science and Technology

Faculty: Science, Health, Education and Engineering
School: Science & Engineering
Teaching Session: Semester 1
Year: 2018
Course Coordinator: Dr Sanjeev Kumar Srivastava Tel: 07 54594819 Email: ssrivast@usc.edu.au
Course Moderator: Prof John Yeaman Email: JYeaman@usc.edu.au

Please go to the USC website for up to date information on the teaching sessions and campuses where this course is usually offered

1. What is this course about?
1.1 Description
Geographic information systems (GIS)—are applied in diverse multidisciplinary settings and GIS skills are highly sought after in the job market. This course will include all three aspects of GIS: theories covering the science behind GIS technology; the technology in the form of software; and its applications to the real-world using geospatial analysis. On completion, you will acquire GIS knowledge and skills that can be applied in your respective discipline areas. Furthermore, the course will lead into an advanced GIS course.

1.2 Course topics
The course will cover following GIS topics:
- Introduction to geographical information science and technology and its history
- Geographic representation with GIS data models
- Metadata
- Conventional and GIS maps
- Map-scale for conventional maps and GIS maps
- Coordinate systems and geodetic datum types
- Cartography and geographic representation
- GIS data creation and collection
- Vector and raster based GIS analysis
- GIS attributes and geospatial query
- Geospatial analysis to address real-world issues
- Spatial interpolations
- Future of GIS and advanced GIS applications

2. What level is this course?
200 level Developing - Applying broad and/or deep knowledge and skills to new contexts. May require pre-requisites and introductory level knowledge/skills. Normally undertaken in the 2nd or 3rd year of an undergraduate program
3. **What is the unit value of this course?**

12 units

4. **How does this course contribute to my learning?**

<table>
<thead>
<tr>
<th>Specific Learning Outcomes</th>
<th>Assessment tasks</th>
<th>Graduate Qualities or Professional Standards mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critically identify and use geospatial data and geospatial techniques to address different real world issues</td>
<td>1, 2, and 3</td>
<td>Creative and critical thinkers.</td>
</tr>
<tr>
<td>Apply GIS tools and technique to address a real-world issue</td>
<td>1, 2, and 3</td>
<td>Empowered.</td>
</tr>
<tr>
<td>Demonstrate spatial thinking</td>
<td>1, 2, and 3</td>
<td>Empowered.</td>
</tr>
<tr>
<td>Communicate geospatial discourse in different discipline specific contexts</td>
<td>3</td>
<td>Empowered.</td>
</tr>
</tbody>
</table>

5. **Am I eligible to enrol in this course?**

Refer to the [USC Glossary of terms](https://www.usc.edu.au) for definitions of “pre-requisites, co-requisites and anti-requisites”.

5.1 **Enrolment Restrictions**

Nil

5.2 **Pre-requisites**

Nil

5.3 **Co-requisites**

Nil

5.4 **Anti-requisites**

Nil

5.5 **Specific assumed prior knowledge and skills (where applicable)**

Basic knowledge of computer operation.
Course Outline: ENS253 An Introduction to Geographic Information Science and Technology

6. How am I going to be assessed?

6.1 Grading scale

Standard – High Distinction (HD), Distinction (DN), Credit (CR), Pass (PS), Fail (FL)

6.2 Assessment Tasks

<table>
<thead>
<tr>
<th>Task No.</th>
<th>Assessment Tasks</th>
<th>Individual or Group</th>
<th>Weighting</th>
<th>What is the duration/length?</th>
<th>When should I submit?</th>
<th>Where should I submit it?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Quizzes</td>
<td>Individual</td>
<td>25%</td>
<td>Approximately 10 minutes each, longer for week 6 discussions.</td>
<td>Weeks 2, 3, 5, 6, 9, 11 and 12</td>
<td>BlackBoard</td>
</tr>
<tr>
<td>2</td>
<td>Hand drawn sketch of USC campus to a complete GIS dataset</td>
<td>Individual</td>
<td>25%</td>
<td>Activities involving sketch, scanning, georeferencing, and assigning metadata and coordinate system</td>
<td>Week 8 Parts of this task has to be submitted during Weeks 2, 3, 4, and 6 for formative feedback</td>
<td>Blackboard Weeks 2 and 3 activities will be submitted to instructor during lecture</td>
</tr>
<tr>
<td>3</td>
<td>Real-world application of GIS while integrating your disciplinary knowledge</td>
<td>Individual</td>
<td>50%</td>
<td>2000 words, maps, and metadata</td>
<td>Week 13</td>
<td>Blackboard</td>
</tr>
</tbody>
</table>

100%

Assessment Task 1: Quizzes

Goal:
This assessment task will facilitate your learning of GIS technology, spatial thinking and critical use of geospatial data.

Product:
Seven quizzes

Format:
A combination of multiple-choice questions, activities, short-answer questions, and group discussions report
- Week 3 quiz will be during the lecture.
- Week 6 group discussion will be during the lecture and subsequent discussions and report preparation will be on Blackboard.

Criteria:
You will be evaluated on:
- Use, terms and application of Geospatial data as well as Spatial analysis

<table>
<thead>
<tr>
<th>Generic skill assessed</th>
<th>Skill assessment level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information literacy</td>
<td>Developing</td>
</tr>
<tr>
<td>Applying technologies</td>
<td>Developing</td>
</tr>
</tbody>
</table>
Assessment Task 2: Hand drawn sketch of USC campus to a complete GIS dataset

Goal: This task is designed to develop your spatial thinking as you go through the interrelated steps of translating a hand drawn map into a final and complete GIS data set. These activities will span several teaching weeks and will involve the creation of different elements that will be given formative feedback and will be marked with the final product which will be a complete GIS data set with well-defined coordinate system and metadata.

Product: Complete GIS data sets with metadata and well-defined coordinate system.

Format: The final GIS data set uploaded on Blackboard.

Criteria: You will be assessed on:
- Cartographical quality of the submitted map
- Georeferencing of the map
- Metadata
- Defining coordinate system and datum
- Response to formative feedback on previously submitted elements

<table>
<thead>
<tr>
<th>Generic skill assessed</th>
<th>Skill assessment level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information literacy</td>
<td>Developing</td>
</tr>
<tr>
<td>Applying technologies</td>
<td>Developing</td>
</tr>
</tbody>
</table>

Assessment Task 3: GIS in your Discipline

Goal: This is a major project where you will use all of your previous learning and apply it to a real world context/issue for your discipline. You will produce a proposal, identification of a problem, data sets and map for formative feedback and then use that information to perform GIS analysis and subsequently preparing a report.

Product: GIS analysis and related elements

Format: Details for this project will be on Blackboard and discussed in tutorials

Criteria: You will be assessed on:
- Use of geospatial data and geospatial techniques
- Application of GIS tools
- Spatial Thinking
- Use of geospatial discourse
- Response to formative feedback on previously submitted elements

<table>
<thead>
<tr>
<th>Generic skill assessed</th>
<th>Skill assessment level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>Developing</td>
</tr>
<tr>
<td>Problem solving</td>
<td>Developing</td>
</tr>
</tbody>
</table>

7. What are the course activities?

7.1 Directed Study Hours

PER WEEK:
- 2 hr lecture
- 2 hr computer laboratory tutorial

7.2 Teaching Semester/Session(s) Offered

Sippy Downs: Semester 1
Course content

<table>
<thead>
<tr>
<th>Week/Module</th>
<th>What key concepts/content will I learn?</th>
<th>What activities will I engage in to learn the concepts/content?</th>
<th>Directed Study Activities</th>
<th>Independent Study Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to GIS and its evolution</td>
<td>Lecture on course objectives and structure, Introduction to geographical information systems (GIS), and its evolution. Tutorials on: Introduction to Windows XP and ArcGIS, ArcGIS Explorer and Google Earth software. Exposure to learning resources</td>
<td>Book chapters specified in the lecture notes and participation in BlackBoard's discussion board</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Maps and GIS</td>
<td>Lecture on conventional map, its types and its comparison with GIS maps Tutorial on creating a map document and exploring GIS map</td>
<td>Book chapters specified in the lecture notes and participation in BlackBoard's discussion board</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Map scale and data quality</td>
<td>Lecture on map scale and geographic data quality. Tutorial on map scale and data quality using real-world examples.</td>
<td>Book chapters specified in the lecture notes and participation in BlackBoard's discussion board</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Geographic communication</td>
<td>Lecture on geographic communication. Tutorials on producing cartographic quality maps using appropriate map layout, colour combination, text, and symbols.</td>
<td>Book chapters specified in the lecture notes and participation in BlackBoard's discussion board</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Geographic representation</td>
<td>Lecture geographic representation using data models. Lecture on metadata and its significance. Tutorial on understanding digital geographic representation and metadata.</td>
<td>Book chapters specified in the lecture notes and participation in BlackBoard's discussion board</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Geodetic datum types and coordinate systems</td>
<td>This will be a flipped class where lecture recording as well as materials on geodetic datums and coordinate systems will be provided before the lecture. The discussions will be held in the Visualisation and Collaboration studio. In this week 3d simulations of GIS data models will occur in a fully immersive environment. We believe that using this immersive technology will enhance and support your understanding of key GIS concepts. Tutorials on datums and coordinate systems.</td>
<td>Lecture recordings, book chapters specified in the lecture notes and participation in BlackBoard's discussion board</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>GIS data creation and search</td>
<td>Lecture on GIS data creation and search. Tutorial on creating GIS datasets and their search on the web.</td>
<td>Book chapters specified in the lecture notes and participation in BlackBoard's discussion board</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>GIS analysis 1</td>
<td>Lectures on vector-based GIS analysis. Tutorial on vector-based GIS analysis</td>
<td>Book chapters specified in the lecture notes and participation in BlackBoard's discussion board</td>
<td></td>
</tr>
</tbody>
</table>
Course Outline: ENS253 An Introduction to Geographic Information Science and Technology

<table>
<thead>
<tr>
<th>9</th>
<th>GIS analysis 2</th>
<th>Lectures on raster-based GIS analysis. Tutorial on raster-based GIS analysis</th>
<th>Book chapters specified in the lecture notes and participation in BlackBoard's discussion board</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Attribute information in GIS data and queries</td>
<td>Lecture and tutorial on GIS attribute table and spatial query</td>
<td>Book chapters specified in the lecture notes and participation in BlackBoard's discussion board</td>
</tr>
<tr>
<td>11</td>
<td>Geospatial analysis to address real-world issues</td>
<td>Lecture on geospatial analysis with real-world examples Tutorial on geospatial analysis</td>
<td>Book chapters specified in the lecture notes and participation in BlackBoard's discussion board</td>
</tr>
<tr>
<td>12</td>
<td>Spatial interpolation</td>
<td>Lecture and tutorial on spatial interpolations</td>
<td>Book chapters specified in the lecture notes and participation in BlackBoard's discussion board</td>
</tr>
<tr>
<td>13</td>
<td>Advanced GIS</td>
<td>Lecture and tutorial on advanced GIS analysis and 3D visualisation</td>
<td>Book chapters specified in the lecture notes and participation in BlackBoard's discussion board</td>
</tr>
</tbody>
</table>

Please note that the course activities may be subject to variation.

8. What resources do I need to undertake this course?

Please note that course information, including specific information of recommended readings, learning activities, resources, weekly readings, etc. are available on the course Blackboard site. Please log in as soon as possible.

8.1 Prescribed Text(s)

Please note that you need to have regular access to the resource(s) listed below as they are required.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Title</th>
<th>Publisher</th>
</tr>
</thead>
</table>

8.2 Required and Recommended Readings

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Title</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang K.</td>
<td>2010</td>
<td>Introduction to Geographic information systems</td>
<td>New York: McGraw-Hill College</td>
</tr>
</tbody>
</table>

8.3 Specific Requirements

Students must purchase the tutorial manual from the Reprographics and Print Services. PDF version will be available on the Blackboard. A free copy of students’ version of ArcGIS will be provided for installation of the software on home computer.
9. Risk management
Health and safety risks for this course have been assessed as low.

It is your responsibility as a student to review course material, search online, discuss with lecturers and peers, and understand the health and safety risks associated with your specific course of study. It is also your responsibility to familiarise yourself with the University’s general health and safety principles by reviewing the online Health Safety and Wellbeing training module for students, and following the instructions of the University staff.

10. What administrative information is relevant to this course?
10.1 Assessment: Academic Integrity
Academic integrity is the ethical standard of university participation. It ensures that students graduate as a result of proving they are competent in their discipline. This is integral in maintaining the value of academic qualifications. Each industry has expectations and standards of the skills and knowledge within that discipline and these are reflected in assessment.

Academic integrity means that you do not engage in any activity that is considered to be academic fraud; including plagiarism, collusion or outsourcing any part of any assessment item to any other person. You are expected to be honest and ethical by completing all work yourself and indicating in your work which ideas and information were developed by you and which were taken from others. You cannot provide your assessment work to others. You are also expected to provide evidence of wide and critical reading, usually by using appropriate academic references.

In order to minimise incidents of academic fraud, this course may require that some of its assessment tasks, when submitted to Blackboard, are electronically checked through SafeAssign. This software allows for text comparisons to be made between your submitted assessment item and all other work that SafeAssign has access to.

10.2 Assessment: Additional requirements
Eligibility for Supplementary Assessment
Your eligibility for supplementary assessment in a course is dependent of the following conditions applying:
 a) The final mark is in the percentage range 47% to 49.4%
 b) The course is graded using the Standard Grading scale
 c) You have not failed an assessment task in the course due to academic misconduct

10.3 Assessment: Submission penalties
Late submission of assessment tasks will be penalised at the following maximum rate:
• 5% (of the assessment task’s identified value) per day for the first two days from the date identified as the due date for the assessment task.
• 10% (of the assessment task’s identified value) for the third day
• 20% (of the assessment task’s identified value) for the fourth day and subsequent days up to and including seven days from the date identified as the due date for the assessment task.
• A result of zero is awarded for an assessment task submitted after seven days from the date identified as the due date for the assessment task.

Weekdays and weekends are included in the calculation of days late.
To request an extension, you must contact your Course Coordinator and supply the required documentation to negotiate an outcome.
10.4 Study help
In the first instance, you should contact your tutor, then the Course Coordinator. Additional assistance is provided to all students through Academic Skills Advisers. To book an appointment or find a drop-in session go to Student Hub.
Contact Student Central for further assistance: +61 7 5430 2890 or studentcentral@usc.edu.au

10.5 Links to relevant University policy and procedures
For more information on Academic Learning & Teaching categories including:
- Assessment: Courses and Coursework Programs
- Review of Assessment and Final Grades
- Supplementary Assessment
- Administration of Central Examinations
- Deferred Examinations
- Student Academic Misconduct
- Students with a Disability

Visit the USC website:
http://www.usc.edu.au/explore/policies-and-procedures#academic-learning-and-teaching

10.6 General Enquiries
In person:
- USC Sunshine Coast - Student Central, Ground Floor, Building C, 90 Sippy Downs Drive, Sippy Downs
- USC SouthBank - Student Central, Building A4 (SW1), 52 Merivale Street, South Brisbane
- USC Gympie - Student Central, 71 Cartwright Road, Gympie
- USC Fraser Coast - Student Central, Student Central, Building A, 161 Old Maryborough Rd, Hervey Bay

Tel: +61 7 5430 2890
Email: studentcentral@usc.edu.au