Infectious diseases and immunology

Accessibility links

Infectious diseases and immunology


Allergy Immunobiology Mite (AIM) Group

Our group focus is on improved understanding of inflammatory and immune responses and how they contribute to the progression of several common diseases including allergy and infectious skin diseases. Outcomes center on the development of novel immunotherapeutics and diagnostics and are linked to translational improvements in health outcomes for disadvantaged populations.

Scabies is a contagious skin disease caused by the itch mite Sarcoptes scabiei. Scabies affects over 100 million individuals worldwide, primarily families and young children, but also presents as epidemics in institutional settings such as nursing homes and prisons. Infestations are associated with secondary bacterial infection predisposing those affected to renal and rheumatic heart disease.

Laboratory Heads:

Areas of investigation include:

  • Improved diagnostics for scabies

  • Novel immunotherapy for severe scabies, enabling targeted treatment for those at risk

  • The immunobiology of cross reactive allergens of house dust mites and scabies mites

  • Development of new treatments for scabies, including natural therapies and exploring the feasibility of adapting existing veterinary therapies

  • Prevalence and management of scabies in aged care facilities

Projects available

  • In-vitro bioassays of natural compounds and existing compounds against Sarcoptes scabies
  • Development of a PCR diagnostic for scabies
  • Development of diagnostic biomarkers for scabies

Bacterial Genetics and Disease Group (BGD)

The BGD group applies molecular, immunological epidemiological and biotechnological approaches to the study of microbiological diseases.

Laboratory Head: Dr David McMillan

Pathogenesis and Prevention of beta-hemolytic bacterial infections. Group A streptococcus is a bacterium that kills hundreds of thousands of people each year. Diseases caused by this bacterium are particularly prevalent in Australian Indigenous populations. No vaccine is available to prevent infection with this organism. Research conducted by our group is aimed at developing novel vaccines to prevent infection, and increasing our understanding of the role that specific virulence factors play in the pathogenesis of this organism.

Bacterial infection of medical devices. Bacterial colonisation of medical devices is a leading cause of hospital acquired infection. The insertion of a catheter into a vein provides a portal by which bacteria can cross the skin and enter normally sterile body sites. Our current research in this area involves characterising bacteria present on medical devices, and investigating the changes in antiseptic and antibiotic properties of these organisms.

Projects available:

  • Development of a vaccine for prevention of group A streptococcal infection
  • Characterising how streptococci protect themselves from the human immune system
  • Genomic analysis of a group G streptococcal isolate associated with rheumatic fever
  • What is the biological role of the M-protein in group G streptococcus
  • Characterisation of antibiotic and antiseptic resistance in

Student who undertake research projects in my group can expect to learn one of more of the following techniques: protein expression and purification; DNA sequencing and analysis; ELISA, basic and molecular microbiological techniques; Western blotting; microscopy; the study of protein-protein interactions; and basic statistical analyses.

Molecular Engineering Research Group

We use molecular engineering techniques to develop next-generation molecular devices for diagnostics and therapeutics.

Laboratory Head: Dr Joanne Macdonald

We previously demonstrated a next-generation molecular device able to play tic-tac-toe interactively against a human opponent. We are now adapting this technology for autonomous and intelligent diagnostic and therapeutic devices. For example, we are building point-of-care devices similar to an at-home pregnancy test that provides a text diagnosis of viral infections, including Hendra and Ebola viruses.

Microbial pathogenesis

Theme Leader: Associate Professor Mohammad Katouli

Key research areas:

  • Molecular pathogenesis of E. coli translocation and sepsis

Translocation of E. coli across the gut epithelium can result in fatal sepsis in post-surgical patients. In vitro experiments have identified the existence of a novel pathotype of translocating E. coli (TEC) that employs an unknown mechanism for translocating across epithelial cells to the mesenteric lymph nodes and then to blood stream both in humans and animal models. We have sequenced the genome of four TEC strains and their comparison with other pathogenic E. coli has shown that these TEC strains carry a genomic island that encodes a Type 6 Secretion System that may contribute to adhesion of the bacteria to gut epithelial cells. The human TEC strain also carries the invasion gene ibeA, which is absent in other pathogenic E. coli strains and is our target to identify the mechanisms of E. coli translocation.

  • Pathogenesis of uropathogenic E. coli (UPEC) in children and adults

This project investigates the pathogenesis of uropathogenic E. coli (UPEC) by studying virulence factors that contribute to the survival and persistence of UPEC in the upper urinary tract. This project also investigated the potential of these strains to translocate from the urinary or GI tracts by testing their interaction with bladder (T-24), renal (A-498) and gut epithelial (Caco-2) cells. Genetic relatedness of UPEC from different sources will also be studied to understand the prevalence of specific pathogenic clones in Australia and elsewhere. These include genes encoding for invasion and antigen 43 as well as iron acquisition genes and factors that may be associated with renal scarring.

  • Development of gut microbiota in infants; a comparative study between land and water birth

This initial microbial colonization during the birth process and its consequent effect on the mucosal interface with the host has attracted increasing attention. As infants receive their initial microflora primarily from their mother, this project aims to investigate the effect of birth type (land or water) on the level of microbial colonization of the infants originating from their mothers in water-birth babies and their persistence during the early stage of infant’s life.

  • Gut mucosal associated Escherichia coli in patients with chronic inflammatory bowel disease and colorectal cancer.

Certain strains of Escherichia coli associated with the mucosa of the gastrointestinal (GI) tract have been increasingly implicated in the pathogenesis of Crohn’s disease (CD),Ulcerative colitis (UC) and Colorectal cancer (CRC). Several pathogenic mechanisms have been attributed to these strains which include adhesion to and invasion of the gut mucosa, the presence of specific genes involved in their translocation and their survival in macrophages. This project aims to characterize E. coli strains found in patients with CD, UC, CRC and healthy individuals with respect to their clonality, their virulence gene profiles and their interaction with a gut epithelial cell line (Caco-2 cell).

Chlamydia Research Group

The Chlamydia Research Group investigates all aspects of chlamydial infections and disease in humans and a range of animals (koalas, sheep, other wildlife, fish, etc). Focus areas of research include vaccine development, diagnostics, therapeutics, genomics, epidemiology, pathogenesis and evolution.

Laboratory Head: Professor Peter Timms

Back to top

Pro tip: To search, just start typing - at any time, on any page.

Searching {{ model.SearchType }} for returned more than {{ model.MaxResults }} results.
The top {{ model.MaxResults }} of {{ model.TotalItems }} are shown below.

Searching {{ model.SearchType }} for returned {{ model.TotalItems }} results.

Searching {{ model.SearchType }} for returned no results.